
Xi Graphics

The State of Accelerated-X™
Wm. E. Davis

Xi Graphics, Inc.

This paper is intended for those who are using or considering the use of UNIX® operating systems
(including Linux-based OSs) with the X Window System and current commercial graphics hardware,
and who need good graphics sub-system software with a fast, solid graphics driver for that graphics
hardware, and prompt customer support for that sub-system software. In addition to these
requirements, there may be a need for support of special graphics features or a particular OS or
computer platform. While the subject can be very technical, the paper is written more for the
Manager of Product Development or the Program Manager rather than for the software engineer.

Xi Graphics, Inc. has been developing and licensing its own implementation of the X Window
System ("X") and the "graphics drivers" that are used with this implementation for over ten years
now. The trade name for the software is Accelerated-X, chosen partly because the software uses
the graphics hardware to its fullest capability to accelerate the graphics operations - i.e., the
software is "hardware-accelerated" - and partly because Xi Graphics' entire implemention of X is
architected for high performance - "acceleration through architecture," so to speak.

X Window System - What is it?
X goes back some twenty years and had it origins at MIT in the Athena Project. Many papers have
been written on the subject, so we won't spend much time on its history here. X has progressed
through a number of major releases over those years and has passed from MIT to the X
Consortium to X.org who is responsible for maintaining the specifications of X, generally known as
X11Rx.x.

The specifications for X focus on the "what, not how" or put another way, "Policy not Procedures."
Thus the outcomes are specified, but how one gets there is up to the implementer. A "Sample
Implementation" (SI) is available with the specifications to show how one might go about
implementing the X sub-system. The SI is not production software, so in order to produce a really
usable package, a great deal of re-do is needed. And each re-do is different. Thus the internals of
the X server - the major portion of X - is different among HP, Sun, IBM, Xi Graphics, X.org (the
successor to XFree86), and so on.

A typical UNIX operating system is shown in Figure 1. In this particular case, the Solaris system is
named, but it could be HP/UX or AIX and the picture would be the same.

2

Xi Graphics

The X portion of the OS is the X server (including the graphics driver). The kernel and kernel
drivers for I/O & Comm interfaces, the GUI, and the window manager are parts of Solaris, and are
not part of X. All of the slate-colored boxes are provided by a single source - Sun Microsystems in
this case - and will most assuredly work
together properly. The X
implementation is a Sun product, known
as Xsun. The graphics driver portion of
the X server, known in the trade as the
"ddx" - or (graphics) device dependent
part of X - is also a Sun product. The
GUI, window manager and kernel stuff
are Sun products.

Isolating X from the OS and expanding
it a bit to show some more details, we
have Figure 2 which depicts remote
clients (they are not on the same
computer as is the display server). As
the authors of the 1992 book The X Window System Server, Elias Israel and Erik Fortune noted,
"The server is such a large and complex system that we couldn't fit all the interesting topics
between the covers of one book" (which had over 500 pages), depicting the X server in a simple
way was also a bit challenging. Another book published in the same year, X Window System, by
Robert W. Scheifler & James Gettys, is well over 900 pages. So the X Window System is a sizable
body of work to which we can attest, since Xi Graphics makes its living developing, licensing and
supporting X sub-system software for many graphics hardware architectures, OSs, and computer
platforms. Unfortunately, there are some in the user community who have treated X as "just
another utility" much to their detriment. Maybe this paper can help prevent more of these blunders.

The X Server Disected (a little)
Graphics driver - Beginning at the "back-end," the item most often (erroneously) referred to as the
"graphics driver" - the ddx - is the part of the X server that is dedicated to a particular graphics
architecture - the graphics chip and associated output channels to drive the attached monitors.
Recently the complexity of the "channel" part of graphics cards has increased substantially, with up
to four monitors (as this is written) being driven from a graphics card with a single graphics chip. It
has been common to see two monitors connected to one graphics chip, but four is pretty impressive
(e.g., the Matrox QID cards). The graphics driver has the resposibility of using all of

OS
kernel

&
utilities

mouse

keyboard

monitor(s)

gr card(s)/chip(s)

Graphical User Interface (GUI)
(desktop)

window manager

graphics driver
(the "ddx" part of X server)

X server

Figure 1. System with Solaris OS

client

client

client

(private interface)

3

Xi Graphics

the available hardware on the graphics chip/card to extract the maximun graphics rendering and
display performance from that hardware, in both 2D and 3D operations. The driver can also be
made to use available graphics hardware in the 3D section of the chip to help implement interesting
features for 2D displays (at least in the case of Accelerated-X drivers).

The ddx is only the "device dependent" part of the graphics driver; there is another part of the driver
- "the device independent" part, known as the "dix" - that is in the larger part of the X server shown
in Figure 2. If the X server architecture already includes the framework or infrastructure to
accomodate all of the features and
capabilities needed by a previously
unsupported new graphics chip/card,
then only the ddx, the "graphics driver"
need be written. Most graphics chips of
the same vintage tend to have similar
features and capabilities implemented in
slightly different ways and with different
register designations, memory sizes,
clock speeds, and so on. Once the dix
portion of the X server has been
properly designed to implement the
archicture from one manufacturer, it
should also support the (somewhat
similar) architectures from other
manufacturers. That leaves only the
ddx portion of the (total) graphics driver to be written.

Since Xi Graphics has been privileged to have access (under Non-Disclosure Agreements) to the
confidential information on the details of graphics chip hardware architecture from a good number of
chip manufacturers over the years, we have been able to architect the X servers in ways to easily
accomodate the second, third, fourth manufacturer's chips as they came along, without having to do
much tweaking on the basic structure. The result has been Accelrated-X server implementations
that are well designed, stable both in operation and code base, and feature rich, which makes the
task of adding support for a new chip to the portfolio straight-forward and rather routine.

The ddx and dix together provide all of the graphics features that can be used in a graphics-based
X system for a particular graphics architecture, limited only by the features supported in hardware

mouse

keyboard

monitor(s)

gr card(s)/chip(s)

Figure 2. Accelerated-X on local computer, clients are remote.

client

client

client

(graphics driver ddx part)

xsvc

Xlib
comm link

remote computer X protocol
packets

X protocol
processor

I/O
sockets

OS
kernel

Xi Graphics'
Accelerated-X

X server resource mgr
display mgr
window ops
color mgr

ï
ï
ï

gr context
session mgr
events mgr
I/O
fonts
client comm

Remote Display

(uses comm link

between Client(s)

& Display X server

X server

4

Xi Graphics

when it comes to hardware acceleration. Features such as rotating the displayed image(s),
stretching images across multiple monitors driven by separate graphics chips, anti-aliasing text,
using hardware overlay image planes and video windows, providing fast and accurate
record/playback capabilities, etc., can be implemented with relative ease in a well designed X
server. Otherwise, implementing such features/capabilities can result in some severe hacking, with
the usual poor performance, instabiltiy, and difficult maintenance - as is found in many freeware
(open source) graphics systems

A kernel driver we call the "xsvc driver" is included with each Accelerated-X server/driver package.
The xsvc driver is the only kernel driver required by Accelertate-X, and is used primarily for
establishing with the kernel the memory and DMA resources X will need. Because our graphics
sub-system does not depend upon the OS kernel to do "graphics work," it is divorced as much as
possible from the particular kernel on which it is running. Thus portability is simplified and
maintenance is minimized relative to supporting the many UNIX OSs and their various versions.

Contrast this "keep the kernel at arms' length" approach with the open source efforts at X.org and
its contributors. X.org developers - in concert with the Linux kernel developers - seem to strive to
move more and more of the graphics sub-system into the kernel, and are currently even working to
move peripheral device drivers into the kernel on a per device basis, instead of having a general
interface to which peripheral devices can communicate, such as is used with Solaris for example.
One motivation for this effort, it seems, is to force proprietary device drivers to be open source,
since anything in the Linux kernel must be open source. Never mind that it makes a hash out of
maintenance, and will eliminate the availablility of some peripherals for Linux users. Open Source
is the objective. Or maybe the Religion.

X11 Server Extensions were anticipated to be needed to accomodate new features and
capabilities over time, and many have been sanctioned. Accelerated-X supports the official
extensions, and some of the unofficial ones. (An "unofficial" extension is defined here as an
extension that found its way into an X.org release without the benefit of specifications for such
and/or being officially adopted by the organization responsible for maintaining the
standards/specifications of X). A couple of such unofficial extensions come to mind as examples -
the RandR and Render extensions. There are other examples. Unlike the oversignt of OpenGL, X
seems to have lost the oversight and controls mechanisms that were present to some degree in the
past. This is unfortunate, since it is apparent that those mechanisms are sorely needed. In the
case of the Render extension, it has been included in releases by X.org, without the benefit of
specifications, and Xi Graphics has declined to implement portions of it because those portions
seem to have no reason to exist. "Render" is used in Accelerated-X primarily with fonts.

5

Xi Graphics

High performance and low maintenance are - or should be - serious considerations for X users.
High performance is not obtained just by the hardware. Xi Graphics has seen many examples
where the latest, hotest graphics hardware has been brought to its knees by poor graphics
sub-system software performance. While these items are not represented by a box or two in one
of the Figures, software that is poorly architected and badly designed will almost always exhibit poor
performance and high maintenance requirements. The (generally low) level of performance, and
the (generally high) level of maintenance needs of open source X sub-system software exemplifies
the difference between the open source "community" approach in all of its glory, and the
commercial, for profit, "customers are King" approach in all its "evil."

Accelerated-X graphics drivers are designed for high performance and low maintenance. This is
also true of the other parts of the X server architecture of course, but the other parts are not subject
to the high rate of change as are the graphics driver parts. Xi Graphics licenses its X graphics
sub-system, requiring a license fee for each computer on which it is installed. In the face of
competition from free open source X servers and graphics drivers, this policy would seem
unworkable. And for the home user who will put up with unstable operation and no available service
except for the plea "Have X.org graphics, Please Help, God Bless" broadcast on the Internet, the
idea of paying for something that can be had for free is unthinkable.

For organizations who can not tolerate poor performance and unstable operation in their
graphics-based system, and who need the assurance of fast customer support when a bug surfaces
or a change is needed, the free X server solutions may not be the ticket. Xi Graphics charges a fee
for the use of its software, but the customer support is free. This model is exactly the opposite of
the freeware open source X servers/drivers, where the emphasis is to get something "out there" and
worry about problems later. This creates a market for the individuals who market their services as
troubleshooters in Linux, but the overall results can be quite expensive to the customer in terms of
moneys paid, production delays, lost business, and lost customers. Because Xi Graphics provides
its standard customer support services for free, our emphasis is on implementing good architectural
designs that are thoroughly tested on a number of boxes and graphics cards/chips before releasing
the software. We devote a lot of effort in making sure not much service is needed, or otherwise we
wouldn't be in business.

An OpenSource Myth
The myth that availablity of the source code for the X server/graphics driver graphics sub-system
would solve all (or at least most) problems of X graphics, is just that - a myth. First, there is the
underlying myth that the graphics chip manufacturers such as ATI, Intel, Matrox, and Nvidia, who
have invested hundreds of millions of dollars developing ever increasingly sophisticated graphics

6

Xi Graphics

technology in their graphics chip designs trying to gain an advantage over each other, will decide to
make this expensive (and highly protected) technology publicly available. Something about a "cold
day" comes to mind. But even if these firms made their technology available - by releasing the
source code of their graphics drivers - the complexity of the technology is such that only those well
versed in the art, as the lawyers say, could begin to understand the code and make improvements
to it or fix bugs in a manner that would be useful in a commercial system.

But the bigger point is this: there are individuals who are well versed in the art of writing graphics
drivers for graphics chips, and most of them work at ATI, Intel, Matrox, and Nvidia writing drivers for
those complex chips for use on Windows and on UNIX (X). Yet the complaint level from users of
those drivers for X (mostly on Linux) is very high. These individuals are experts, well trained in the
science, and experienced in the art, and, presumably very bright. So why do the "Linux drivers"
produced by these firms have so many complaints lodged against them, while the Linux drivers
from Xi Graphics get universal kudos from their users on the same graphics chips (except Nvidia
chips, which Xi Graphics is not allowed - by Nvidia - to support, but whose users constantly
approach Xi Graphics for Linux support)? If you guessed the X server, you get the prize.

Freeware Open Source X servers
The graphics driver writers at the graphics chip manufacturers start in a deep hole when beginning
to write a graphics driver for Linux. That hole is caused by the fact that the open source freeware X
servers - primarily those known as XFree86 and X.org servers - are very poorly architected,
designed and implemented. The Sample Implementation (SI) that was provided back about '87 was
just an example of how one might design the code to implement the X Window System as was
specified back then. The specifications stressed "Policy not Procedures," or put another way, "not
How, but What". The SI was a "how it might be done" and was probably intended to give some
hints about how one might implement the specifications. The commercial X servers that
implemented the X specifications apparently used very little code from the SI without extensive
changes. These servers were designed by commercial enterprises who had customers to satisfy,
and competitors with which to contend. The good name of the firms was at stake, and the X
servers were required to be of sufficiently high quality to not besmirch that name.

In the case of the X servers produced by the open source "community" over the past twenty years,
the motivation of the contributors seems to have been considerably different from that of the
commerical firms. David Dawes, who at the time was heading the XFree86 freeware effort,
explained to the author - when he asked why the XFree86 servers were of such poor quality - that
the effort was to quickly get "something" out here, and then worry about quality later. In a nutshell,
that is the explanation of how the hole got created in which the Linux graphics driver developers at

7

Xi Graphics

ATI, Matrox, Nvidia, et al, now find themselves: the X servers to which they are designing their
Linux drivers are the open source servers, and the open source servers are not of commercial
quality, are poorly architected and implemented, and have been thoroughly hacked over the years
in attempts to add the capability to support more modern graphics architectures.

The open source server developers did not (and do not) have to respond to customers, worry about
cost of support of delivered product, consider long term implications to the "bottom line," and worry
about besmirching the name of the organization. Most contributors to the freeware X server effort
provided their time for free - a mention of their contribution was reward enough - (although often the
contributor was on the payroll of others, so did not have to go hungry while contributing software
development for free). And, there was no real single point of control (in the guidance context), so
the total effort was sort of a free-for-all (pun not intended).

The overall result is that the state of the [open source] Linux graphics, as described by Smirl[JS] is
pretty dismal. So bad, in fact, that there is a push by some in the open source community to toss X
and start over from scratch to design another system based on OpenGL from the ground up. Even
Jim Gettys, one of the original members of the Athena team at MIT where X had its beginnings
about 1984, indicated recently [JG] that version X11 released in 1987, included "Inadequate 2D
graphics, which had always been intended to be augmented and/or replaced".

Well, ten years ago, Xi Graphics did just that, within the X specifications, of course, and has
produced strong 2D graphics performance for over ten years now. We didn't use much of the SI
implementation - we did our own. And over the years we have continued to bring the capabilities of
the X server along to keep up with the technical advances and capabilities of the graphics
hardware. The open source X servers suffer greatly in this respect, and the Linux developers at
the graphics chip manufacturers are (probably) acutely aware of this. It is not X that needs to be
tossed; it is the open source X servers that should be tossed. If twenty years of open source
development has botched the current open source X server effort, who is to believe that the open
source movement will be able to do better at developing a replacement for X based on OpenGL?
Which gets us to another part of the X server - OpenGL and the GLX extension.

Accelerated-X and OpenGL
Xi Graphics delivered its first OpenGL 3D product in 1999, and it had support for over 30 graphics
cards from a number of graphic chip manufacturers. The OpenGL pipeline provided in the product
was developed "from scratch" by Xi Graphics, and the Accelerated-X servers were upgraded to
provide smooth integration of the GLX extension and to maintain for 3D rendering the same high
standards maintained for 2D-only products. In the intervening years, both the OpenGL pipeline

8

Xi Graphics

and the X servers have been extended to add features and capabilities in both. When first
introduced, our pipeline supported OpenGL v1.1, which was upgraded to v1.2 by Sept '01, and a
year later to v 1.3 (with most of the requirements for v1.4, including GLX v1.4 with Pbuffer support).
Currently v1.5 is fully supported with some later extensions. Figure 3 depicts OpenGL and X set up
for indirect rendering, with GLX capabilities in libGL at both ends.

Unlike new releases of OpenGL software by X.org, when Xi Graphics releases upgraded OpenGL
support, it has been tested on a large number of graphics cards/chips (we have a huge inventory of
graphics cards and motherboards),
many versions of UNIX and Linux
kernels, a bunch of x86 platforms,
and perhaps a SPARC and/or PA
RISC platform. And, the graphics
chip support starts with the newer
graphics hardware, not the oldest, as
is often the case with the open
source server/drivers. While this may
sound like a massive undertaking to
someone well versed in the efforts
expended generating open source X
and OpenGL software for (just) Linux
kernels, it actually is done by a small
team, thanks to the architecture and
design of the underlying
Accelerated-X graphics sub-system for X and OpenGL, and to the fact that there is a
business-oriented organization and hierachy guiding the effort.

Direct Rendering With OpenGL
The X.org OpenGL efforts are severely handicapped by the approach taken to implement direct
rendering of OpenGL when both the client and X server are on the same computer. The open
source approach is "marketed" as "Direct Rendering Infrastructure" (DRI), and "Direct Rendering
Manager" (DRM). Architecturally, it is a real mess, resulting in a complicated structure that requires
separate drivers be built for each Linux kernel version for each graphics chip type. Each time the
Linux group changes the kernel a bit (which now happens frequently), the DRI requires a change.
UGH! Not only that, moving to a UNIX kernel such as Solaris, HP/UX, etc., also requires significant
changes.

mouse

keyboard

monitor(s)

gr card(s)/chip(s)

Figure 3. Indirect OpenGL rendering

client

client

client

graphics driver ddx
w/OpenGL

xsvc

libGL
comm link

remote computer X protocol
packets

X protocol
processor

I/O
sockets

OS
kernel

Xi Graphics'
Accelerated-X

X server resource mgr
display mgr
window ops
color mgr

ï
ï
ï

gr context
session mgr
events mgr
I/O
fonts
client comm

Indirect Rendering

(uses comm link

between Client(s)

& Display X server
w/GLX

X server

9

Xi Graphics

Xi Graphics provides direct rendering capability in Accelerated-X OpenGL. Indirect rendering
(which uses GLX lib error checking) is a much "safer" path for OpenGL on X, but it is slower
because it is designed to use the communications path that is required when OpenGL applications
are run on one machine, say in Boulder, Colorado, and the graphical results displayed on another
computer, say in Washington, DC. But if our customers in Boulder want to run in direct mode, they
can bypass the GLX X packets and comm link and run in direct rendering mode, and obtain a
significant increase in speed. With indirect rendering (as is depicted in Figure 3), there are "guard
rails" along the road, in the form of error checking of the OpenGL commands when using the GLX
lib and the X Protocol mechanism. These guard rails are removed when direct rendering is
selected, so one can "run off a cliff" much more easily, meaning that with direct rendering, the
application has a good deal of direct control of the graphics hardware, and can royally screw up the
operations with erroneous commands.

Xi Graphics adopts the philosophy that the OpenGL applications will be written correctly, and will
run without problems in direct mode on a well designed system. To assume otherwise, one would
have to do extensive error checking and erect complicated barriers in the graphics sub-system in an
attempt to catch all (or even most) application errors and prevent them from causing system
problems. Because OpenGL is very complicated, it would be impossible to completely insulate the
sub-system from apps errors, and any serious attempt to do so would defeat the propose of using
direct rendering in the first place - faster operation. Extensive error checking causes poor
performance, so one is reduced to chasing one's own tail. If an application causes trouble in direct
mode, running it in indirect mode usually allows the application developer to quickly find the
problem(s) and make corrections.

The freeware X.org OpenGL server/driver developers have taken the other approach, and attempt
to prevent faulty OpenGL applications from doing harm to the graphics sub-system. Not only is the
performance poor as a result, the "Direct Rendering Infrastructure" and "Direct Rendering Manager"
used to replace the "guard rails" in GLX causes a separate graphics driver to be required for most
Linux kernel versions, and most versions of the X server core for each chip supported.

With the Linux kernels changing at a very rapid clip nowadays, as are the X server releases from
X.org, this "save the system from inept OpenGL developers" philosophy causes everyone else lots
of grief, it seems. But, hey, it's free software! That is, it's free if the cost of initially getting it to work
in a product and the on-going updates and bug fixes due to changes in the underlying OS kernel
and/or the clients over the life of the product is not considered.

10

Xi Graphics

Direct Rendering in Accelerated-X
Figure 4 depicts direct rendering with Xi Graphics' approach. Notice that there is still only one
kernel driver - the "X Services Module," or xsvc. It is the same one as is used for 2D X only
rendering. The client(s) are on the same computer as the display server, so the X Protocol link can
be eliminated. When direct rendering mode is used, an OpenGL application is "allowed" to bypass
the X server for many operations and control the graphics hardware directly. As noted earlier, the
guard rails come down, as do the road
signs warning of danger. Xi Graphics
assumes the OpenGL applications
developers know what they are doing
and how to find and correct errors.
(Using indirect mode is very helpful in
this regard). We did not design the
direct mode to be idiot proof. On the
contrary, we designed it for the
competent.

The necessary coordination of states
and exclusivity of resources and other
"housekeeping" chores caused by the
dual access to the graphics hardware is
managed by the XDA module. So, the
result is clean, and requires minimal changes to existing structure to accomodate direct OpenGL
rendering, and is quite fast. For Xi Graphics' benefit, the straightforward (simple, actually) approach
means that supporting various OS and OS versions, and different graphics hardware is pretty much
routine. Contrast this with the open source approach taken by XFree86/X.org.

Open Source Direct Rendering Infrastructure - DRI
Quoting one of the key developers of DRI, (italics added)

"The DRI is not a single, isolated piece of software. Instead, the DRI is composed
of a number of distinct modules. The following briefly describes those modules and
where they fit into a Linux system."

First he describes the kernel modules.
"For each 3D hardware driver there is a kernel module. This module deals with
DMA, AGP memory management, resource locking, and secure hardware access.
In order to support multiple, simultaneous 3D applications the 3D graphics hardware

mouse

keyboard

monitor(s)

gr card(s)/chip(s)

Figure 4. Accelerated-X Direct Rendering of OpenGL

client

client

client

graphics driver ddx
w/OpenGL

xsvc

Xlib

I/O
sockets

OS
kernel

Xi Graphics'
Accelerated-X

X server
(w/GLX ext+

resource mgr
display mgr
window ops
color mgr

ï
ï
ï

gr context
session mgr
events mgr
I/O
fonts
client comm

libGL
w/GLX

XDA
X Direct Access

11

Xi Graphics

must be treated as a shared resource. Locking is required to provide mutual
exclusion. DMA transfers and the AGP interface are used to send buffers of
graphics commands to the hardware. Finally, there must be security to prevent
out-of-control clients from crashing the hardware. ... Since internal Linux kernel
interfaces and data structures may be changed at any time, DRI kernel modules
must be specially compiled for a particular kernel version." [BP]

Why DRI kernel Modules?
Pushing things into the kernel can cause bad things to happen. Especially in the "Linux World."
The Linux kernel seems to have a new revision about once a month. Changes are made that
"break" existing systems. One almost gets the feeling that breaking existing systems is "a good
thing" if what breaks is some binary code from a "closed source." That religious thing again.

Frequent kernel changes effecting many kernel drivers and application modules mean that the
maintainers of those drivers and modules have a difficult time making their stuff work on the many
kernels floating around in the Linux space. Just ask Nvidia, ATI, et al. So when the DRI developers
say that "Since internal Linux kernal interfaces and data structures may be changed at any time,
DRI kernel modules must be specially compiled for a particular kernel version", one is left shaking
one's head.

The argument that because the source is always available in the "pure" Linux World, the mismatch
of kernels and modules is no big deal - "just pull all of the correct modules together and recompile" -
just doesn't seem to make sense in the Real World. Plug and Play would seem to be a lot more
desirable.

And another thing. This matter of "security" being one of the "objectives" of DRI: "... there must be
security to prevent out-of-control clients from crashing the hardware." In order to get this "security,"
the Direct Rendering Manager (DRM) - the module that performs similar functions to
Accelerated–X's XDA module - must be put into the kernel. Huh? Not only that, packets are still
required by DRI; they just don't have to go over a comm link. But they are generated, and they are
then "analized" by the DRM - in the kernel - in an effort to make the system "secure" against
out-of-control OpenGL applications. Xi Graphics thinks this is an impossible goal to begin with, and
discarded such ideas, but the XFree86 community disagreed and proceeded to create a very large
processing overhead in the attempt at "security." So direct rendering in XFree/X.org systems is not
so fast, to say the least. But wasn't direct rendering of OpenGL supposed to make things go faster?
One can get a headache from shaking one's head at all of this. Figure 5 is an attempt at depicting
an XFree86/X.org based Linux system. It ain't easy.

12

Xi Graphics
Kernel-based DRM
The DRM is responsible for a lot of things in the DRI. It, rather than libGL, sends commands to the
graphics card(s)/chip(s). This is after it analizes the DRI packet contents generated from the
commands from libGL to ensure the "security" of the system by not letting "out-of-control clients
crash the hardware". With multiple clients, the DRM is responsible for maintaining context
coherency of the graphics engine(s) with the clients, does context switching (galore), reports to
clients X events, and so on. It is a real busy module. And it is doing all of this in the kernel. If it
hiccups, it just might actually bring
down the whole system. Imagine
that - the graphics system bringing
down everything. That seems to be
a strange way of building a system
that is protected from graphics
software screwups.

"For each 3D hardware driver there
is a kernel module." Let's see,
now. Only one kernel driver is
needed for each type of graphics
chip. One for Matrox G400, one for
Matrox Parhelia, for ATI RADEON
R200, for ATI R300, etc. Not too
bad, it seems, until one asks why is
there a kernel module per chip
type? Xi Graphics supports a lot of graphics chip types, and does not have a single kernel module
specific to any one of them. That sure saves us a lot of work! Especially when one considers that
the Linux kernel is changing at a fast pace. Those poor open source graphics folks, having to
maintain all of this kernel stuff. Hope they can find time to get in a little fishing and snowboarding.

With all of this complicated DRI stuff going on, one might be concerned with the stability of the X
Window System, on Linux particularly, especially when running OpenGL clients. But knowing how
much of the system is actually running in the kernel, one might get the willies. The kernel would
seem to be spending an awful lot of time doing graphics, instead of doing real UNIX kernel stuff,
while graphics are done in user space - where the kernel can protect the system from those
out-of-control OpenGL applications. Product and Program Managers who would like to avoid such
things should seriously condider using only commercial (closed source) graphics sub-systems on
UNIX - and that includes Linux - systems.

--0--
© Copyright 2006, Xi Graphics, Inc.

mouse

keyboard

monitor(s)

gr card(s)/chip(s)

Figure 5. Open Source DRI/DRM X server

client

client

client

graphics driver ddx
w/OpenGL

libGL
w/GLX

OS
kernel XFree86/X.org

X server
w/DRI

resource mgr
display mgr
window ops
color mgr

ï
ï
ï

gr context
session mgr
events mgr
I/O
fonts
client comm

DRI packet
encode
decode

DRM

I/O
sockets

chip1 mod
chip2 mod

DRI
packets

OGL rendering commands

[JS] "The State of Linux Graphics" August 30, 2005 by Jon Smirl
 http://jonsmirl.googlepages.com/graphics.html

[JG] "The (Re)Architecture of the X Window System" June 15, 2004
 by James Gettys and Keith Packard
 HP Cambridge Research Laboratory

[BP] "Introduction to the Direct Rendering Infrastructure" by Brian Paul
 August 10., 2000

13

